

AUTONOMOUS SEASONALITY ADAPTATION

DARSANA JOSYULA, PH.D.

BOWIE STATE UNIVERSITY

WHAT IS SEASONALITY

Seasonality is a characteristic by which recurrent patterns occur in time series data.

WHY SEASONALITY DETECTION

- Agents can exploit the lessons learned in a previous similar season to improve its performance when the season repeats.
 - A cognitive radar system may choose its transmission parameters based on what worked best in the previous season that had similar spectrum signals.
 - Failed transmission attempts in a previous season need not be repeated if the cognitive system can recognize the similarity of the current season.
- If the current season has never been experienced before, then it is an anomaly that requires special attention for learning further about how to behave in that season.
 - The learning that occurs during a failure can be reused for failure recovery when a similar failure occurs.

- How can an agent detect if it has experienced the current season before?
- How can an agent predict its next season?
- How can an agent avoid relearning its behavior when a season repeats?

WHAT TO MONITOR

- Performance
- Suggestions
- Observations
- Behaviors

PATTERNS IN TIME-SERIES DATA

Reflexive Pattern (Fuel indicator data)

Periodic Pattern (Weather data)

Forked Pattern (location data from a room cleaning robot that cleans an extra room on alternate days)

Hybrid Pattern (Camera data from a self-driving car)

KASAI OVERVIEW

Seasonal pattern detection service.

Kasai accepts a sequence of temporal data as its input.

Online mode

- Detects patterns and stores these patterns are rules
- Updates existing patterns as new patterns emerge

Offline mode

- The trained Kasai is used to validate incoming data and to detect anomaly
- Any deviation from stored rules is a potential anomaly

KASAI RULES

A rule consists of:

- A Boolean predicate
- An action to be performed when the predicate is TRUE
- An action to be performed when the predicate is FALSE, often nothing

Representation

• Rule $P_x \rightarrow A_n$: If P is true perform A.

DATA SERIES TYPES

Туре	Example	Grammar	Notes
Random	azbycgdhsfgh		There are no actual patterns in the data. It is not possible to describe this pattern using any combination of grammatical rules.
Reflexive	aaaaaaa	a→a	Reflexive patterns contain sequences of the same token.
Periodic	abcabcabcabc	$a \rightarrow b$ $ab \rightarrow c$ $abc \rightarrow a$	The pattern in the data is composed of the symbols (abc) of tokens (a, b, c). It is possible to describe this sequence by using a grammar (a set of rules).
Forked	abcabcdabcabcd	abcabcd→a abcabcd→a	Seasonal patterns include trivial periodic patterns. However, symbols in the sequence form patterns. The grammar for this pattern includes the trivial periodic pattern grammar above plus these rules.
Hybrid	aaabaabkaab	a → a aaa → b aaabaa → b aaabaab → k	A hybrid sequence combines periodic, reflexive, or forked characteristics.

- 1865 ——

The grammar is represented as a directed graph. The nodes of the graph are the rules. The edges are directed and form a unique path through the nodes

REFERENCES

- K. M'Bale and D. Josyula The Kasai Algorithm
 http://csce.ucmss.com/cr/main/papersNew/LFSCSREApapers/ICA3020.pdf
 ICAI'2017, The 2017 World Congress in Computer Science, Computer
 Engineering & Applied Computing | CSCE'17
- K. M'Bale and D. Josyula, Encoding seasonal patterns using the Kasai algorithm, Artificial Intelligence Research, Vol 6, No 2, 2017

CONCLUSION

Seasonality detection and prediction are important for autonomous agents

The Kasai algorithm analyzes an input sequence to generate a set of rules that describes the input sequence

Kasai allows seasonality detection, prediction and adaptation

Multi-level Metacognition allows

ACKNOWLEDGMENTS

This work is supported by ARL -MAST Collaborative Technology Alliance – Contract No. W911NF-08-2-004, Thurgood Marshall College Fund Summer Fellowship and U.S. Department of Education – Grant No. P031B090207.

Researchers – Kenneth M'Bale D.Sc., Marvin Conn, Tagrid Alshalali, Anthony Herron and Hubert Boateng

THANK YOU!

